/******************************************************************************
* Spine Runtimes Software License v2.5
*
* Copyright (c) 2013-2016, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable, and
* non-transferable license to use, install, execute, and perform the Spine
* Runtimes software and derivative works solely for personal or internal
* use. Without the written permission of Esoteric Software (see Section 2 of
* the Spine Software License Agreement), you may not (a) modify, translate,
* adapt, or develop new applications using the Spine Runtimes or otherwise
* create derivative works or improvements of the Spine Runtimes or (b) remove,
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
* or other intellectual property or proprietary rights notices on or in the
* Software, including any copy thereof. Redistributions in binary or source
* form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#define SPINE_OPTIONAL_NORMALS
using UnityEngine;
namespace Spine.Unity.MeshGeneration {
public class ArraysMeshGenerator {
#region Settings
public bool PremultiplyVertexColors { get; set; }
protected bool addNormals;
public bool AddNormals { get { return addNormals; } set { addNormals = value; } }
protected bool addTangents;
public bool AddTangents { get { return addTangents; } set { addTangents = value; } }
#endregion
protected float[] attachmentVertexBuffer = new float[8];
protected Vector3[] meshVertices;
protected Color32[] meshColors32;
protected Vector2[] meshUVs;
#if SPINE_OPTIONAL_NORMALS
protected Vector3[] meshNormals;
#endif
protected Vector4[] meshTangents;
protected Vector2[] tempTanBuffer;
public void TryAddNormalsTo (Mesh mesh, int targetVertexCount) {
#if SPINE_OPTIONAL_NORMALS
if (addNormals) {
bool verticesWasResized = this.meshNormals == null || meshNormals.Length < targetVertexCount;
if (verticesWasResized) {
this.meshNormals = new Vector3[targetVertexCount];
Vector3 fixedNormal = new Vector3(0, 0, -1f);
Vector3[] normals = this.meshNormals;
for (int i = 0; i < targetVertexCount; i++)
normals[i] = fixedNormal;
}
mesh.normals = this.meshNormals;
}
#endif
}
/// Ensures the sizes of the passed array references. If they are not the correct size, a new array will be assigned to the references.
/// true, if a resize occurred, false otherwise.
public static bool EnsureSize (int targetVertexCount, ref Vector3[] vertices, ref Vector2[] uvs, ref Color32[] colors) {
Vector3[] verts = vertices;
bool verticesWasResized = verts == null || targetVertexCount > verts.Length;
if (verticesWasResized) {
// Not enough space, increase size.
vertices = new Vector3[targetVertexCount];
colors = new Color32[targetVertexCount];
uvs = new Vector2[targetVertexCount];
} else {
// Too many vertices, zero the extra.
Vector3 zero = Vector3.zero;
for (int i = targetVertexCount, n = verts.Length; i < n; i++)
verts[i] = zero;
}
return verticesWasResized;
}
public static bool EnsureTriangleBuffersSize (ExposedList submeshBuffers, int targetSubmeshCount, SubmeshInstruction[] instructionItems) {
bool submeshBuffersWasResized = submeshBuffers.Count < targetSubmeshCount;
if (submeshBuffersWasResized) {
submeshBuffers.GrowIfNeeded(targetSubmeshCount - submeshBuffers.Count);
for (int i = submeshBuffers.Count; submeshBuffers.Count < targetSubmeshCount; i++)
submeshBuffers.Add(new SubmeshTriangleBuffer(instructionItems[i].triangleCount));
}
return submeshBuffersWasResized;
}
/// Fills Unity vertex data buffers with verts from the Spine Skeleton.
/// Spine.Skeleton source of the drawOrder array
/// Slot index of the first slot.
/// The index bounding the slot list. [endSlot - 1] is the last slot to be added.
/// Spacing along the z-axis between attachments.
/// If set to true, vertex colors will be premultiplied. This will also enable additive.
/// Vertex positions array.
/// Vertex UV array.
/// Vertex color array (Color32).
/// A reference to the running vertex index. This is used when more than one submesh is to be added.
/// A temporary vertex position buffer for attachment position values.
/// Reference to the running calculated minimum bounds.
/// Reference to the running calculated maximum bounds.
/// Include MeshAttachments. If false, it will ignore MeshAttachments.
public static void FillVerts (Skeleton skeleton, int startSlot, int endSlot, float zSpacing, bool pmaColors, Vector3[] verts, Vector2[] uvs, Color32[] colors, ref int vertexIndex, ref float[] tempVertBuffer, ref Vector3 boundsMin, ref Vector3 boundsMax, bool renderMeshes = true) {
Color32 color= new Color32();
var skeletonDrawOrderItems = skeleton.DrawOrder.Items;
float a = skeleton.a * 255, r = skeleton.r, g = skeleton.g, b = skeleton.b;
int vi = vertexIndex;
var tempVerts = tempVertBuffer;
Vector3 bmin = boundsMin;
Vector3 bmax = boundsMax;
// drawOrder[endSlot] is excluded
for (int slotIndex = startSlot; slotIndex < endSlot; slotIndex++) {
var slot = skeletonDrawOrderItems[slotIndex];
var attachment = slot.attachment;
float z = slotIndex * zSpacing;
var regionAttachment = attachment as RegionAttachment;
if (regionAttachment != null) {
regionAttachment.ComputeWorldVertices(slot.bone, tempVerts);
float x1 = tempVerts[RegionAttachment.X1], y1 = tempVerts[RegionAttachment.Y1];
float x2 = tempVerts[RegionAttachment.X2], y2 = tempVerts[RegionAttachment.Y2];
float x3 = tempVerts[RegionAttachment.X3], y3 = tempVerts[RegionAttachment.Y3];
float x4 = tempVerts[RegionAttachment.X4], y4 = tempVerts[RegionAttachment.Y4];
verts[vi].x = x1; verts[vi].y = y1; verts[vi].z = z;
verts[vi + 1].x = x4; verts[vi + 1].y = y4; verts[vi + 1].z = z;
verts[vi + 2].x = x2; verts[vi + 2].y = y2; verts[vi + 2].z = z;
verts[vi + 3].x = x3; verts[vi + 3].y = y3; verts[vi + 3].z = z;
if (pmaColors) {
color.a = (byte)(a * slot.a * regionAttachment.a);
color.r = (byte)(r * slot.r * regionAttachment.r * color.a);
color.g = (byte)(g * slot.g * regionAttachment.g * color.a);
color.b = (byte)(b * slot.b * regionAttachment.b * color.a);
if (slot.data.blendMode == BlendMode.additive) color.a = 0;
} else {
color.a = (byte)(a * slot.a * regionAttachment.a);
color.r = (byte)(r * slot.r * regionAttachment.r * 255);
color.g = (byte)(g * slot.g * regionAttachment.g * 255);
color.b = (byte)(b * slot.b * regionAttachment.b * 255);
}
colors[vi] = color; colors[vi + 1] = color; colors[vi + 2] = color; colors[vi + 3] = color;
float[] regionUVs = regionAttachment.uvs;
uvs[vi].x = regionUVs[RegionAttachment.X1]; uvs[vi].y = regionUVs[RegionAttachment.Y1];
uvs[vi + 1].x = regionUVs[RegionAttachment.X4]; uvs[vi + 1].y = regionUVs[RegionAttachment.Y4];
uvs[vi + 2].x = regionUVs[RegionAttachment.X2]; uvs[vi + 2].y = regionUVs[RegionAttachment.Y2];
uvs[vi + 3].x = regionUVs[RegionAttachment.X3]; uvs[vi + 3].y = regionUVs[RegionAttachment.Y3];
if (x1 < bmin.x) bmin.x = x1; // Potential first attachment bounds initialization. Initial min should not block initial max. Same for Y below.
if (x1 > bmax.x) bmax.x = x1;
if (x2 < bmin.x) bmin.x = x2;
else if (x2 > bmax.x) bmax.x = x2;
if (x3 < bmin.x) bmin.x = x3;
else if (x3 > bmax.x) bmax.x = x3;
if (x4 < bmin.x) bmin.x = x4;
else if (x4 > bmax.x) bmax.x = x4;
if (y1 < bmin.y) bmin.y = y1;
if (y1 > bmax.y) bmax.y = y1;
if (y2 < bmin.y) bmin.y = y2;
else if (y2 > bmax.y) bmax.y = y2;
if (y3 < bmin.y) bmin.y = y3;
else if (y3 > bmax.y) bmax.y = y3;
if (y4 < bmin.y) bmin.y = y4;
else if (y4 > bmax.y) bmax.y = y4;
vi += 4;
} else if (renderMeshes) {
var meshAttachment = attachment as MeshAttachment;
if (meshAttachment != null) {
int meshVertexCount = meshAttachment.worldVerticesLength;
if (tempVerts.Length < meshVertexCount) tempVerts = new float[meshVertexCount];
meshAttachment.ComputeWorldVertices(slot, tempVerts);
if (pmaColors) {
color.a = (byte)(a * slot.a * meshAttachment.a);
color.r = (byte)(r * slot.r * meshAttachment.r * color.a);
color.g = (byte)(g * slot.g * meshAttachment.g * color.a);
color.b = (byte)(b * slot.b * meshAttachment.b * color.a);
if (slot.data.blendMode == BlendMode.additive) color.a = 0;
} else {
color.a = (byte)(a * slot.a * meshAttachment.a);
color.r = (byte)(r * slot.r * meshAttachment.r * 255);
color.g = (byte)(g * slot.g * meshAttachment.g * 255);
color.b = (byte)(b * slot.b * meshAttachment.b * 255);
}
float[] attachmentUVs = meshAttachment.uvs;
// Potential first attachment bounds initialization. See conditions in RegionAttachment
if (vi == vertexIndex) {
// Initial min should not block initial max.
// vi == vertexIndex does not always mean the bounds are fresh. It could be a submesh. Do not nuke old values by omitting the check.
// Should know that this is the first attachment in the submesh. slotIndex == startSlot could be an empty slot.
float fx = tempVerts[0], fy = tempVerts[1];
if (fx < bmin.x) bmin.x = fx;
if (fx > bmax.x) bmax.x = fx;
if (fy < bmin.y) bmin.y = fy;
if (fy > bmax.y) bmax.y = fy;
}
for (int iii = 0; iii < meshVertexCount; iii += 2) {
float x = tempVerts[iii], y = tempVerts[iii + 1];
verts[vi].x = x; verts[vi].y = y; verts[vi].z = z;
colors[vi] = color; uvs[vi].x = attachmentUVs[iii]; uvs[vi].y = attachmentUVs[iii + 1];
if (x < bmin.x) bmin.x = x;
else if (x > bmax.x) bmax.x = x;
if (y < bmin.y) bmin.y = y;
else if (y > bmax.y) bmax.y = y;
vi++;
}
}
}
}
// ref return values
vertexIndex = vi;
tempVertBuffer = tempVerts;
boundsMin = bmin;
boundsMax = bmax;
}
/// Fills a submesh triangle buffer array.
/// Spine.Skeleton source of draw order slots.
/// The target triangle count.
/// First vertex of this submesh.
/// Start slot.
/// End slot.
/// The triangle buffer array to be filled. This reference will be replaced in case the triangle values don't fit.
/// If set to true, the triangle buffer is allowed to be larger than needed.
public static void FillTriangles (ref int[] triangleBuffer, Skeleton skeleton, int triangleCount, int firstVertex, int startSlot, int endSlot, bool isLastSubmesh) {
int trianglesCapacity = triangleBuffer.Length;
int[] tris = triangleBuffer;
if (isLastSubmesh) {
if (trianglesCapacity > triangleCount) {
for (int i = triangleCount; i < trianglesCapacity; i++)
tris[i] = 0;
} else if (trianglesCapacity < triangleCount) {
triangleBuffer = tris = new int[triangleCount];
}
} else if (trianglesCapacity != triangleCount) {
triangleBuffer = tris = new int[triangleCount];
}
var skeletonDrawOrderItems = skeleton.drawOrder.Items;
for (int i = startSlot, n = endSlot, ti = 0, afv = firstVertex; i < n; i++) {
var attachment = skeletonDrawOrderItems[i].attachment;
// RegionAttachment
if (attachment is RegionAttachment) {
tris[ti] = afv;
tris[ti + 1] = afv + 2;
tris[ti + 2] = afv + 1;
tris[ti + 3] = afv + 2;
tris[ti + 4] = afv + 3;
tris[ti + 5] = afv + 1;
ti += 6;
afv += 4;
continue;
}
// MeshAttachment
var meshAttachment = attachment as MeshAttachment;
if (meshAttachment != null) {
int[] attachmentTriangles = meshAttachment.triangles;
for (int ii = 0, nn = attachmentTriangles.Length; ii < nn; ii++, ti++)
tris[ti] = afv + attachmentTriangles[ii];
afv += meshAttachment.worldVerticesLength >> 1; // length/2;
}
}
}
public static void FillTrianglesQuads (ref int[] triangleBuffer, ref int storedTriangleCount, ref int storedFirstVertex, int instructionsFirstVertex, int instructionTriangleCount, bool isLastSubmesh) {
int trianglesCapacity = triangleBuffer.Length;
if (isLastSubmesh && trianglesCapacity > instructionTriangleCount) {
for (int i = instructionTriangleCount; i < trianglesCapacity; i++)
triangleBuffer[i] = 0;
storedTriangleCount = instructionTriangleCount;
} else if (trianglesCapacity != instructionTriangleCount) {
triangleBuffer = new int[instructionTriangleCount];
storedTriangleCount = 0;
}
// Use stored quad triangles if possible.
int[] tris = triangleBuffer;
if (storedFirstVertex != instructionsFirstVertex || storedTriangleCount < instructionTriangleCount) { //|| storedTriangleCount == 0
storedTriangleCount = instructionTriangleCount;
storedFirstVertex = instructionsFirstVertex;
int afv = instructionsFirstVertex; // attachment first vertex
for (int ti = 0; ti < instructionTriangleCount; ti += 6, afv += 4) {
tris[ti] = afv;
tris[ti + 1] = afv + 2;
tris[ti + 2] = afv + 1;
tris[ti + 3] = afv + 2;
tris[ti + 4] = afv + 3;
tris[ti + 5] = afv + 1;
}
}
}
/// Creates a UnityEngine.Bounds struct from minimum and maximum value vectors.
public static Bounds ToBounds (Vector3 boundsMin, Vector3 boundsMax) {
Vector3 size = (boundsMax - boundsMin);
return new Bounds((boundsMin + (size * 0.5f)), size);
}
#region TangentSolver2D
// Thanks to contributions from forum user ToddRivers
/// Step 1 of solving tangents. Ensure you have buffers of the correct size.
/// Eventual Vector4[] tangent buffer to assign to Mesh.tangents.
/// Temporary Vector2 buffer for calculating directions.
/// Number of vertices that require tangents (or the size of the vertex array)
public static void SolveTangents2DEnsureSize (ref Vector4[] tangentBuffer, ref Vector2[] tempTanBuffer, int vertexCount) {
if (tangentBuffer == null || tangentBuffer.Length < vertexCount)
tangentBuffer = new Vector4[vertexCount];
if (tempTanBuffer == null || tempTanBuffer.Length < vertexCount * 2)
tempTanBuffer = new Vector2[vertexCount * 2]; // two arrays in one.
}
/// Step 2 of solving tangents. Fills (part of) a temporary tangent-solution buffer based on the vertices and uvs defined by a submesh's triangle buffer. Only needs to be called once for single-submesh meshes.
/// A temporary Vector3[] for calculating tangents.
/// The mesh's current vertex position buffer.
/// The mesh's current triangles buffer.
/// The mesh's current uvs buffer.
/// Number of vertices that require tangents (or the size of the vertex array)
/// The number of triangle indexes in the triangle array to be used.
public static void SolveTangents2DTriangles (Vector2[] tempTanBuffer, int[] triangles, int triangleCount, Vector3[] vertices, Vector2[] uvs, int vertexCount) {
Vector2 sdir;
Vector2 tdir;
for (int t = 0; t < triangleCount; t += 3) {
int i1 = triangles[t + 0];
int i2 = triangles[t + 1];
int i3 = triangles[t + 2];
Vector3 v1 = vertices[i1];
Vector3 v2 = vertices[i2];
Vector3 v3 = vertices[i3];
Vector2 w1 = uvs[i1];
Vector2 w2 = uvs[i2];
Vector2 w3 = uvs[i3];
float x1 = v2.x - v1.x;
float x2 = v3.x - v1.x;
float y1 = v2.y - v1.y;
float y2 = v3.y - v1.y;
float s1 = w2.x - w1.x;
float s2 = w3.x - w1.x;
float t1 = w2.y - w1.y;
float t2 = w3.y - w1.y;
float div = s1 * t2 - s2 * t1;
float r = (div == 0f) ? 0f : 1f / div;
sdir.x = (t2 * x1 - t1 * x2) * r;
sdir.y = (t2 * y1 - t1 * y2) * r;
tempTanBuffer[i1] = tempTanBuffer[i2] = tempTanBuffer[i3] = sdir;
tdir.x = (s1 * x2 - s2 * x1) * r;
tdir.y = (s1 * y2 - s2 * y1) * r;
tempTanBuffer[vertexCount + i1] = tempTanBuffer[vertexCount + i2] = tempTanBuffer[vertexCount + i3] = tdir;
}
}
/// Step 3 of solving tangents. Fills a Vector4[] tangents array according to values calculated in step 2.
/// A Vector4[] that will eventually be used to set Mesh.tangents
/// A temporary Vector3[] for calculating tangents.
/// Number of vertices that require tangents (or the size of the vertex array)
public static void SolveTangents2DBuffer (Vector4[] tangents, Vector2[] tempTanBuffer, int vertexCount) {
Vector4 tangent;
tangent.z = 0;
for (int i = 0; i < vertexCount; ++i) {
Vector2 t = tempTanBuffer[i];
// t.Normalize() (aggressively inlined). Even better if offloaded to GPU via vertex shader.
float magnitude = Mathf.Sqrt(t.x * t.x + t.y * t.y);
if (magnitude > 1E-05) {
float reciprocalMagnitude = 1f/magnitude;
t.x *= reciprocalMagnitude;
t.y *= reciprocalMagnitude;
}
Vector2 t2 = tempTanBuffer[vertexCount + i];
tangent.x = t.x;
tangent.y = t.y;
//tangent.z = 0;
tangent.w = (t.y * t2.x > t.x * t2.y) ? 1 : -1; // 2D direction calculation. Used for binormals.
tangents[i] = tangent;
}
}
#endregion
#region SubmeshTriangleBuffer
public class SubmeshTriangleBuffer {
public int[] triangles;
public int triangleCount; // for last/single submeshes with potentially zeroed triangles.
public int firstVertex = -1; // for !renderMeshes.
public SubmeshTriangleBuffer () { }
public SubmeshTriangleBuffer (int triangleCount) {
triangles = new int[triangleCount];
}
}
#endregion
}
}